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Dedicated to John A. Nohel on his 6 5 th birthday

1. Introduction

The intent of this article is to study the behavior of solutions (v(x, t), u(x, t)) of the
system of differential equations

vt= (1.1)

ut = vx (1.2)

where
= r(u)v ' (1.3)

with r(u) a smooth function satisfying

7(u) >0 , r'(u)<0 (1.4)

and n a positive parameter. Equations (1.1 - 1.3) give rise to a coupled system of par-
tial differential equations in one space dimension. They are supplemented with initial
conditions

v(x,O)=vo(x) , u(x,0)=uo(x), (1.5)

and, as a consequence,
(X,0) = o0(x) (uo(X))V' (X), (1.6)

and with boundary conditions that are discussed later.
To gain some perspective on the problem, note that, if n = 0, (1.1 - 1.3) leads to the

pair of conservation laws
Vt = r(u), (1.7)

Ut = Vi .

If r'(u) > 0 then (1.7) is hyperbolic; however, under (1.4), the system (1.7) is elliptic and
the initial value problem is ill-posed. Nevertheless, it admits an interesting class of special
solutions

ii(x, t) = t + u0,

where u0 is an arbitrary constant. Equations (1.1 - 1.3) with n > 0 can be thought as a r
particular regularization of (1.7).
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A motivation for studying this problem stems from a program of understanding the
phenomenon of shear band formation at high strain rates. Shear bands are narrow regions
of intensely concentrated shearing deformation that are observed during the plastic de-
formation of many materials. The occurrence of shear bands is typically associated with
strain softening type response, past a critical strain, of the measured average shear stress
E(t) versus the measured average shear strain U(t); that is, E = r(U), where r(.) is in-
creasing up to a certain critical strain and decreasing thereafter. 'arious mechanisms and
associated continuum thermomechanics models, often depending on the particular context,
have been proposed for the explanation of shear bands.(see Shawki and Clifton [15] for an
excellent survey of the related literature)".An underlying common feature of several models
is that they are regularizations of an ill-posed problem, or that the associated linearized
problem exhibits growth of high frequency modes,

The model employed here describes the plastic shearing of an infinite plate of unit
thickness subjected to either prescribed tractions or prescribed velocities at the boundaries.
In this framework, v(x, t) describes the velocity field in the shearing direction, a(x, t) stands
for the shear stress and u(x,t) for the plastic shear strain. Equation (1.1) describes the
balance of linear momentum, while (1.2) is a kinematic compatibility relation (note that
elastic effects are neglected); (1.1) and (1.2) are taken over (x,t)e [0,1] x {t > 0} and are
supplemented with the boundary conditions

- t) =I, ,(zt) 1 t > 0,

in case the shearing deformation is caused by prescribed tractions at the boundaries, or

v(0,t) = 0, v(1,t) = , t >0, (1. 9 )v

in the case of prescribed velocities. The constitutive law (1.3) is appropriate for a material
exhibiting strain softening, as manifested in (1.4), and strain rate sensitivity, the strength
of which is measured by the parameter n. Our objective is to use (1.1 - 1.6), (1.9) as a
test problem to analyze the competition between the destabilizing effect of strain softening
versus the stabilizing effect of strain rate dependence.

Technically, the model (1.1 - 1.3) belongs to the class of isothermal viscoelasticity of the
rate type (for general information on the mathematical theory of viscoelasticity the reader
is referred to Renardy, Hrusa and Nohel [14]). Metals, in general, exhibit strain hardening
in isothermal deformations. However, an increase in temperature causes a decrease in the
yield stress, so that in an adiabatic deformation the combined effect of strain hardening
and thermal softening may deliver eventually a net softening. Thus, although (1.1 - 1.3) is
a model in the framework of isothermal mechanical theories, thermal effects are implicitly
taken into account through the hypothesis of strain softening . One of our goals is to
reveal similarities in the structure and predictions of (1.1 - 1.3) as compared to related
models incorporating thermal effects that have been studied recently in the mathematical
literature [7, 17, 19, 2, 1].

We emphasize that the spirit of this study is not to recover solutions of (1.7)-(1.4) as
n -+ 0 limits of solutions of (1.1 - 1.4). Rather the rational here is the converse. Because
of the inherent instability induced by strain softening , it has been postulated that higher
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order effects, such as strain-rate dependence, play an important role and cannot be ignored
(cf. [11, 21]). Apart from some previous investigations using (1.3) for n = 1 [18, 2], other
types of rate dependent constitutive relations have been used to analyze shear bands (e.g.
Wu and Freund [21]), as well as strain-gradient dependent constitutive laws (e.g. Coleman
and Hodgdon [5]). There is a very extensive mechanics literature on the subject and the
reader is referred to [21, 11, 20, 15] and references therein.

From an analysis point of view, equations (1.1 - 1.3) give rise to a coupled system
consisting of a parabolic equation in v coupled through the diffusion coeffient with (1.2) (cf.
(3.1)). As the material is being sheared, under the effect of (1.9), the diffusion coefficient
is decreasing. It is conceivable, that if the decrease is too rapid and/or nonuniform in
the space variable, the diffusion may not be able to stabilize the process. To analyze
this competition, it is helpful to recast (1.1 - 1.3) into an equivalent formulation of a
reaction-diffusion system (cf. (3.4 - 3.5)).

In Section 2 we pursue an existence theory of classical solutions for a coupled system
of partial differential equations (cf. (2.1 - 2.3)) that includes (1.1 - 1.3). This system also
includes certain more general models in viscoelasticity with internal variables, as well as
some models incorporating thermal effects that are used for the analysis of shear bands
[15, 19]. Motivated by the problems under consideration, the main objective is to identify
a minimal set of a-priori estimates sufficient for continuation of solutions. The existence
theory is done in Schauder spaces and the main ingredient is an application of the Leray-
Schauder fixed point theorem. The results are summarized in Theorems 2.4 and 2.5. For
existence theories of weak solutions in structurally related systems the reader is referred
to Charalatnbakis and Murat [3] and Nohel et al. [12].

In Section 3 we take up the problem (P)s consisting of (1.1 - 1.6) with stress boundary
conditions (1.9 )s. Using the results of Section 2 together with the special structure of the
system, it is shown in Theorem 3.2 that solutions of (P)s are globally defined if and only if
the integral flo r( )7d diverges. Moreover, the evolution of solutions of (P)s is studied
under various assumptions for the constitutive function 7(u). Below, we summarize the
outcome of the analysis for the special case of a power law

1- n
a = (1.10)

with parameters m, n positive. The parameter region is decomposed into three distinct
subregions 0 < M< < 1 and > 1, across which the response changesn 22 - n -
drastically:

(i) In the region 0 < '2 < - solutions of (')s are globally defined and, as t -+ c. the shearn 2
stress a(X, t) is attracted to the constant state a 1 while u(x, t) behaves asymptotically
as a function of time.

(ii) In the region < M < 1 the constant state a 1 loses its stability and nonuniformities
in the strain persist for all times.

(iii) Finally. in the region M > 1, u(x,t) becomes infinite in finite time.

For - > we exhibit initial data for which the corresponding u(x, t) develops nonunifor-
mities around x = 0 and x = 1 and looks like two shear bands located at the boundaries.
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The analysis of Section 3 is effected by means of comparison principles for (3.4) and energy
estimates for (P)s.

For a power law (1.10) the system (1.1 - 1.2) is invariant under a family of scaling
transformations. In Section 4 we take up the problem (P)v consisting of (1.1 - 1.2), (1.10)
and velocity boundary conditions (1.9)v, and introduce a change of variables motivated
by the scaling property. The resulting system (4.20 - 4.22) admits positively invariant
rectangles of arbitrary size. Using this observation together with energy estimates for(P)V-, it is shown in Theorem 4.1 that, if m < min{n, 1}, every solution of (P)v converges
to the uniform shearing solution (1.8), as t -- oo.

2. Existence Theory and Regularizing Effect for a Coupled System

We consider the initial-boundary value problem consisting of the system of quasilinear
partial differential equations

'Otv = Oxw (2.1)

atu = f(x, u, v.) (2.2)
for (x,t)QT := (0,1) x (0, T], T > 0, where

w = (P(XUVr) (2.3)

with boundary conditions

v(Ot) = (1,t) 0, 0 < t < T, 
(2.4)

or
w(O,t) = w(1,t) = 0, 0 < t < T, (2.4)s

and initial conditions

v(x,0) =vo(x), u(x,0) =uo(x), 0<x < 1; (2.5)

as a consequence of (2.3) and (2.5),

w(x, 0) = w0(x):= p(X, uO(x), vo(X)). (2.6)

The functions v(x, t), w(x, t) are real valued, while u(x, t) stands for an RN_-alued func-
tion, all defined on QT = [0,11 x [0, T]. The given functions f(x, p, q): [0, 11'. R ' x R -- RN
and y(x,p,q) : [0, 1] x RN x R -* R are assumed to be smooth with r,:spect to all theirarguments (the hypothesis f and p of class C' suffices for all that follows). In addition
for each fixed (x,p) the function p(x,p,.) is assumed to be strictly increasing and thus
invertible. Let 4'(x,p, r) : [0,1] x RN x R - R be the inverse function. Inverting (2.3)
yields

vX = V(x, u, w). (2.7)
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We seek solutions (v(x,t),u(x,t)) of (2.1 - 2.5) defined on QT, T > 0. Our specific
goals are to identify a minimal set of a-priori estimates that guarantee existence and
continuation of solutions up to time T > 0, and to study the regularizing effect that the
parabolic equation (2.1), (2.3) exerts on solutions.

To this end it is expedient to state an alternative formulation of the problem. The
initial-boundary value problem (2.1 - 2.5) is formally equivalent to the system of reaction-
diffusion equations

atw = a(x, u, w)&9w + b(x, u, w) (2.8)

8tu = g(X, u, w) (2.9)

with boundary conditions

w(0,t) = w.(1,t) = 0, 0 < t < T, (2 .10)v

or
w(0,t) = w(1,t) = 0, 0 < t < T, (2 .10)s

and initial conditions

w(x,0) = wo(x), u(x,0) = uo(x), 0 < x < 1; (2.11)

where
a(x, u, w) = pq(X, U, O(x, U, W))

b(x, u, w) = (Vp . f)(x, u, /(x, u, w)) (2.12)

g(x, u, w) = f(X, u, V'(X, u, w)).

Indeed, given any sufficiently smooth solution (v(x, t), u(x, t)) of (2.1 - 2.5) the pair
(w(x, t), u(x, t)) satisfies (2.8 - 2.11) as follows: Differentiating (2.3) with respect to t and
using (2.1), (2.2), (2.7) and (2.12) leads to (2.8); (2.2) and (2.7) yield (2.9); the rest are
clear. Conversely, if (w(x, t), u(x, t)) is a classical solution of (2.8 - 2.12), define a function
v(x, t) on QT such that

V , = i(, u, w) (2.13)

Vt W

and v(x,0) = vo(x), 0 < x < 1. Since V'(x,p,-) is the inverse function of V(x,p, .), the list
of relations

V (X, P, 0(x, p, r)) = r
(Wq(X,p,4(x,p,r))Or(X,p,r) = 1 (2.14)

op(x,p, O(x,p, r)) + (Pq(X,P. /(x,p, r))kp(x,p, r) = 0

holds, and the compatibility of (2.13) amounts to (2.8) via (2.9) and (2.12). Moreover,
(v(x, t), u(x, t)) satisfies (2.1 - 2.5).

Our strategy is to first prove an existence theorem for classical solutions of (2.8 -
2.11), in Schauder spaces, using the Leray-Schauder fixed point theorem ([10]). This, in
turn, yields an existence theorem for the equivalent system (2.1 - 2.5) provided the initial
data are sufficiently smooth. The smoothness assumptions are then relaxed by means of
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density arguments. In the sequel I. [ will stand for both the absolute value and the Euclidean
norm in RN. Also, 11 II1,/2 (" W,) will denote the usual Schauder norms (cf. [8,9]) in
C,3,3/ 2(QT) (C[0, 11) or [C,3 0/ 2 (QT)] N ([C_[O, 11] N). The meaning of these symbols will
be apparent from the context.

The possibility that (2.1 - 2.5) (or (2.8 -2.11)) admit globally defined solutions for
general nonlinear functions can be ruled out by considering special cases when the system
decouples. To ensure global solvability one could place certain growth restrictions on the
functions f and Wp (or a, b and g). Rather than doing this, we assume that solutions of (2.1
- 2.5) or (2.8 - 2.11) satisfy certain a-priori estimates, namely:

For fixed T > 0 there are positive constants p and M, depending on norms of the initial

data and T, such that any classical solution (v(x,t),u(x,t)) of (2.1 - 2.5) on QT satisfies

Iw(x,t)I M Iu(x,t)I < M (2.15)

and
>qX (,0,VX ) > 0, (2.16)

for (x, t) 6 QT; correspondingly, if (w(x, t), u(x, t)) is a classical solution of (2.8 - 2.11) on

QT, then (2.15) and
a(x,u(x,t),w(x,t)) _ > 0 (2.17)

hold for (x, t)0 QT.
The objective is to reveal (2.15 - 2.17) as a "minimal" set of a-priori estimates sufficient for
continuation of solutions in some appropriate function classes. Although uniform parabol-
icity, embodied in (2.16) or (2.17), is not in general necessary for well-posedness, in light of
the phenomena under consideration and for technical simplicity solutions will be continued
up to the first time that uniform parabolicity fails. For the models at hand (2.15 - 2.17)
are established in Sections 3 and 4. Finally, it is shown in Lemma 2.3 that, under natural
restrictions on the initial data, (2.15 - 2.17) always hold provided T is sufficiently small.

The first goal is to prove an existence theorem for (2.8 - 2.11). For this the initial
data are taken smooth

W0 (X) f C2 +,[0, 11, UO(X) f [C0 [O, 1] N , (2.18)

for some 0 < a < 1, and compatible with the boundary conditions:

wo (i) = 0, i = 0, 1, (2.19)v

in case (2 .10)v applies, or

wo(i) = 0, a(i, uo(i), O)wo17(i) + b(i, uo(i), 0) = 0, i = 0, 1, (2 .19)s

in case (2 .10)s applies. We prove:

Theorem 2.1. Let (Wo(x), uo(x)) satisfy (2.18), (2.19) and assume that the a-priori
estimates (2.15) and (2.17) hold for some T > 0, with M and p positive constants
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depending at most on IIwo112+., Iluo11 and T. There exists a unique solution
(w(x,t),u(x,t)) of (2.8 - 2.11) on QT such that w, wt, wx, wx are in Caa/2(OT)

and u, ut are In [CoaI 2 (QT)] N

Proof. The proof of uniqueness is lengthy but routine and it is omitted.
In view of (2.15) and (2.17), the triplet (x,u(x,t),w(x,t)) takes values in the set

E = {(x, u,w)e [0,1] x RN x R : Jul :- M, IwI _< M, a(x,u,w) > [L. By modifying,
if necessary, the functions a, b and g outside some open set containing E, it is assumed
for the existence part of the proof that all the functions involved are bounded, globally
Lipshitz and, wherever appropriate, with globally Lipshitz derivatives. Moreover, that

a(x,p,r)> : > 0 (2.20)

for (x,p, r) e [0, 1] x RN x R. All bounds and Lipshitz constants depend only on M and u.
For the remainder of the proof K will stand for a generic constant that can be estimated
solely in terms of M, p and T.

We work with the boundary conditions ( 2 .10)s; the boundary conditions ( 2 .10)v are
treated similarly. Let 8 denote the Banach space

B = {w(X, t)E CO'/ 2 (QT) : w(O,t) = w(1,t) = 0, 0 < t < T} (2.21)

and let C stand for the closed subset of [CO,0/2( QT)] N

C = {u(Xt)E [C,,32(T)]N: u(x,0) = uo(x), 0 < x < 1}. (2.22)

For our purposes 3 = min{a, 1}. Define the map T : B -* C that carries V(x,t) eB to
U(x, t) the solution of the family of initial value problems

Ut =g(x,U,W(x,t)) , 0< x<, 0< t <T, (2.23)

U(x,0)=uo(x) , 0< < 1.

Also, for A e [0, 1] define a second map S: [0, 1] x x C -* which takes (A, W(x, t), U(x, t))
to w(x, t) the solution of the initial-boundary value problem

wt = aA(x, U(x, t), V(x, t)),vx + A b(x, U(x, t), V(x, t)) + (1 - A)F(x),

w(O,t)=w(1,t)=O , 0<t<T, (2.24)

w(xO) = Wo(x) , < x < 1,

where aA(x,p,r) := Aa(x,p,r) + (1 - A)L > ', by (2.20), and F(x):= -Pw 0 (x).
Given the maps T and S, construct the composite map P : [0, 1] x B -4 B which

carries A e [0, 1], W c B to

w = P(A, W) := S(A, IV, T(W)). (2.25)
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Observe that if w(x, t) eB8 is a fixed point of P(1, .) and u(x, t) the corresponding solution
of (2.23), then (w(x, t), u(x, t)) satisfies (2.8 - 2.11) on QT. Our objective is to demonstrate
that the map P fulfills the hypotheses of the Leray-Schauder fixed point theorem (for a
formulation see [10], also [6]). To this end, certain properties of the maps T and S are
recorded below.

First consider the map T : -- C. Since g is bounded and globally Lipshitz, the
standard theory of ordinary differential equations implies that given any W(x, t) e B there
is a unique solution U(x, t) of (2.23) defined on [0, 1] x [0, T and such that

IU(x,t)l + IU,(x,t)l __ K1 . (2.26)

Moreover, by first integrating (2.23), for two distinct points x 1 , x 2 in [0, 1] over [0, t], 0 <
t < T, and then estimating the difference using Gronwall's inequality, we deduce with the
help of (2.26)

IIUIla,0/2 _ K 2 (lu 0 1 + 1IW1,/2 + 1). (2.27)

Next, consider the map S : [0, 1] x B x C - B. The classical Schauder theory for
parabolic equations [8, 9] implies that, given any triplet (A, W, U) e [0, 1] x B x C, there is
a unique solution w(x, t) of (2.24) on QT belonging to C2+0,1+0/2(QT) and satisfying

Iwll2+0,0/2 < A1(IwoI2+. + iWIIll,0/ 2 + IIUIl3,3/2 + 1). (2.28)

The constant A, can be estimated solely in terms of IlWlIl,#/2, IlUilf,3/ 2 , yu, M and T.
Finally, consider the map P : [0, 11 x B - B. P is well defined by (2.25). Also:
(i) For any fixed A e[0,1], P(A,.) : B --+ B is compact and continuous.

Since the injection C2+0,1+)/2( QT) -+ CO',/ 2(QT) is compact, (2.27) and (2.28) imply
that P(A,-) is a compact map. Let {TV,} be a convergent sequence in B, W,, -* W in
C,',,3 2(QT); consider wn = P(A, Wn). Since P(\, .) is a compact map, along a subsequence
w, - w in C,,' / 2 (in fact in C2+0',I 1+ ' /2 , for any /3' < 83). One easily shows that
w = P(\, W). Since P(A,.) is single valued, W, --* w along the whole sequence and P(A,.)
is continuous.

(ii) For any bounded subset k of B, the family of maps P(., W) : [0, 1] -- B,
WVe IC, is uniformly equicontinuous.
Let K be a bounded subset of B. Fix W K. For U = T(W) and A, p in [0, 1], let w\, w. be
the respective solutions of (2.24). Note that w\ = P(A, W), wp = P(p, W). The difference
WA - wP satisfies the parabolic equation

(w,\ - wp)t = aA(x, U(x, t), V(x, t))(wA - wp)xx

+ (A - p) [a(x, U(x, t), W(x, t))wp., + b(x, U(x, t), W(x, t)) - ( Iw , + F(.))],

(2.29)
with boundary conditions (2.24)2 and initial condition (w\ - wp)(x, 0) = 0. The Schauder
estimates imply that

IIWA - Wpll 2+0,x+,/ 2 - A21A - pI{IIwpll 2+3,1+#/ 2 + IIIl,1/2 + IIUIl,/3/ 2 + IW012+. + 1}

(2.30)
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with A2 a constant as in (2.28). Combining (2.27), (2.28) and (2.30) we arrive at

IiWA - wp112+),1+,/ 2  _ A3 1A - p[ (2.31)

with A3 depending only on K:, the initial data, yu, M and T. Thus P(., W), W eC is a
uniformly equicontinuous family of maps.

(iii) P(0,.) has precisely one fixed point in B.

For A = 0, (2.24), becomes the heat equation, (2.23) and (2.24) decouple, and (2.24) has
a unique solution in B.

(iv) Any fixed point in 8 of P(A,.), 0 < A < 1, is contained in some bounded
subset K: of B.

Let w e B be a fixed point of P(A, .). Set u = T(w). Then (2.27) implies

U e [C,,,/12(QT)] , and (2.26) now reads

Iu(x,t)I + ut(x,t)I < K 3  , (x,t)eQT. (2.32)

By (2.27) and (2.28), w e C 2+' 1+0/2(QT) and satisfies

wt = aA(x, u, w)w1x + A b(x, u, w) + (1 - A)F(x) (2.33)

on QT with boundary and initial conditions as in (2.24). Since b is bounded, the maximum
principle yields

jw(x, t)I :_ sup Iwo(x)I + K 4 + (1 - A)T sup IF(x)l, (x, t) 1E QT. (2.34)
O<<l 0<x<l

Next, we multiply (2.33) by E integrate by parts over [0, 1] x [0, t], and use Schwarz's
inequality to deduce

jt  21 dxdr + W X .<j5 1 w'x(x)dx + (1 - A)2 SUP IF(x) 12]1= C 2 .

(2.35)
Using (2.35) we obtain

Iw(x, t) - w(y, t)I < dlx - yJ1/ 2 . (2.36)

Also, for fixed 6 > 0 the calculus inequality
,z+6 r 6

261w(x,t) - w(x, I-)1 X+6 Iw(x,t) - w(y,t)ldy + /__ I/w(y, s)dsjdy

'r 6 J - r (2.37)

+ I Iw(y, r) - w(x, r)Idy

holds. We estimate (2.37), using (2.36) and (2.35), and in the resulting inequality we set
b = It - rl 1/2 to arrive at

Iw(x, t) - w(x, r)f < 3CIt - r j1 /4
. (2.38)
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On account of (2.34), (2.36) and (2.38), any fixed point w eB is contained in a bounded
set of C 1 / 2 ,1/4 (QT), and, since /3 - min{a, -}, also in a bounded set of B.

The map P fulfills the hypotheses of the Leray-Schauder fixed point theorem. Thus,
the map P(1, .) has a fixed point in B. If w eB is such a fixed point and u = T(w), then
(w(x, t), u(x, t)) is a classical solution of (2.8 - 2.11) on [0,1] x [0, T]. I

We collect in Lemma 2.2 certain a-priori estimates for solutions of (2.8 - 2.11) that
serve as a starting point to develop an existence theory for the system (2.1 - 2.5). Estimates
(2.41) capture the regularizing effect of the parabolic equation (2.8).

Lemma 2.2. Let (w(x,t),u(x,t)) be a classical solution of (2.8 - 2.11) on QT satisfying
(2.15) and (2.17). Then

Iwl,* < C1 (1 + w~o(x)dx), (2.39)2 4 10

IIuIKO,/ <- C '1 + wox(x)dx + luola), (2.40)

where m3 = min{a, !}. Moreover, for any x, ye [0, 1], s, rf [t,T] with t > 0

C3  /

Iw(x, r) - w(y,r)I < Ix - yV' 2

Vt (2.41)
3C3

Iw(x, r) - w(x, s)I < I - 11/ 4
.

-/

The constants C 1, C 2 and C 3 above depend only on p, Al and T.
Proof. Estimate (2.39) is a direct consequence of (2.34) and (2.35) with A = 1, together
with (2.36) and (2.38); (2.40) follows by combining (2.27) with (2.39).

To show (2.41), first multiply (2.8) by a(IV) and write the resulting identity in the

form

Jr~ x aW + W2= (wW')' + u'b(x, u, w) W ax d1 .(242

/, /- d a _(x'2U, ) d . (2.42)
1W0()a2i, wb(x, i, w) ,,

In view of (2. 7), we may assume that (2.20) holds. Integrating (2.42) over [0, 1] x [0, t],
0 < t < T, and using (2.9), (2.10), (2.15) and (2.20) we obtain

j j Wdrdr <K , . (2.43)

Next, mitiply (2.8) by , and integrate by parts over [0, 1] x [0, t]; by estimating the

resulting identity via (2.15), (2.20), Schwarz's inequality and (2.43) we conclude that

j j rw2(x, r)d.rdr + t j 1 (x, t)dx < K2. (2.44)
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K 1 and K 2 depend only on Mi, M and T. The derivation of (2.41) from (2.44) is similar to
the derivation of (2.36) and (2.38) from (2.35); in (2.41) C3 = /V'r2.8

Lemma 2.3 guarantees that the a-priori estimates (2.15) and (2.17) required in the
hypotheses of Theorem 2.1 are always valid for T sufficiently small.

Lemma 2.3. Let (w(x,t),u(x,t)) be a classical solution of (2.8 - 2.11) defined on
[0, 1] x [0, T*), for some T* > 0.
(a) Suppose that

m, := min a(x,uo(x),wo(x)) > 0. (2.45)
O<x<l

Then given any positive constants [y, M with I < nl, there is T < T* depending on 1Y, M
and the L°-norm of wo,, such that

Iw(x, t)- Wo(x)l _ Al, (2.46)

u(xt) - uO(x)l < Al (2.47)

and (2.17) hold for (x,t)6QT.
(b) Suppose that, in addition,

M2 min a(x, uo(x), r) > 0, (2.48)
O<x<l

w,. <r; wo +

where wo- = inf wo(x), wo+ = sup wo(x). Then given any ji, A, AI_, M+ with
O<x<l O<x<l

0 < P < M 2 , Al > 0, Al < w0 - < wo+ < l+, there is T < T* depending solely on
p, Al, Al- and AI+ such that (2.17), (2.47) and

M_ < w(x, t) /+ (2.49)

hold for (x,t)EQT.
Proof. Let W = w - wo, U = u - uo. Then (W(x, t), U(x, t)) satisfy on [0, 1] x [0, T*) the
differential equations

W,- A(x, U, W)IV,, = A(x, U, W)wox(x) + B(x, U, W) (2.50)

Ut = G(x,U, W) (2.51)

with boundary conditions (2.10) and initial conditions W(x, 0) = 0, U(x, 0) = 0, for
0 < x < 1; the functions A, B and G relate to a, b and g through formulas of the format

A(x,U,W) = a(x,uo(x) + U, wo(x) + W). (2.52)

First consider part (a). Since a, w0 and u0 are continuous, (2.45) and (2.52) imply
that there is p > 0 so that if 0 < x < 1, ,U < p and IVI < p then A(x, U, TV) _ I > 0.
Set k = min{p, Al}. To complete the proof of part (a) it suffices to show: There is T < T"
such that for (x, t) E QT. the triplet

(x, U(x, t), W(x, t)) e E {(XU, W)[ [0,1] x xR : W k, IU k}. (2.53)
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Then (2.17), (2.46) and (2.47) follow from (2.52) and (2.53).
Clearly (2.53) holds on Q, for some r sufficiently small. Moreover so long as (2.53)

holds, the maximum principle for the parabolic equation (2.50) gives the bound

IW(x,t) :_ Fit (2.54)

where F = sup IA(x, U, W)wo,,(x) + B(x, U, W)J. Also, if G = sup IG(x, U, W)J, then
E, Ei

(2.51) together with Gronwall's inequality yield

IU(x,t) Git. (2.55)

Finally, (2.54) and (2.55) imply that (2.53) holds on QT, for any 0 < T < T* with

T < min{ - }. Since F depends on the L'-norm of Woz 2 , the resulting T will

exhibit the same dependence. Under the stronger hypothesis (2.48) this dependence can
be avoided.

Consider now part (b). By virtue of (2.48) and the continuity of a and uo, there are
p, p-, p+ with p > 0 and p- < w0- < wo+ < p+ such that 0 < x < 1, jUl < p and
p- < w < p+ imply a(x,uo(x) + U,w) > p > 0. It now suffices to show that there is
T < T* such that for (x, t)f QT the triplet

(x,U(x,t),w(x,t))EE 2 :=[0,1] X {UeRN : [U[ < k} x [k-,k+]; (2.56)

here k = min{p, Al}, k- = max{p_,M_}, k+ = min{p+,M+} and k- < wo- < wo+ <
k+.

Let B± = sup max{0, ±b(x, uo(x) + U, w)} and consider the comparison functions
E2

W+(x,t) = ±B~t - wo(x) + wo±. On account of (2.50), so long as (2.56) holds, the
functions TV= satisfy the differential inequalities

W- - A(x, U, W)O W_ O_ W - A(x, U, W)O2=W < aW+ - A(x,U, W)62lW+
(2.57)

w-(X, 0) < W(x, 0) = 0 < W+(X, 0)

and, by (2.19), corresponding inequalities at the boundaries. Using comparison principles
for parabolic equations we obtain

-B.t + wo- < w(x, t) <_ B+t + wo+. (2.58)

Moreover, (2.51) yields
ItU(x,t)[ <5 G2t, (.9

where G2 = sup jg(x, u0 (x) + U, v)l. Finally, (2.58) and (2.59) imply that (2.56) holds on
E2

QT, forany0<T<T* withT<min{ +,-- G }
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Theorem 2.1 in conjunction with Lemmas 2.2 and 2.3 give rise to the following local
existence and continuation theorem for the initial-boundary value problem (2.8 - 2.11) in
Schauder spaces.
Theorem 2.4. Let wo(x)eCl+'[0, 1], uo(x)E [Ca[0,1]]N satisfy the compatibility con-
ditions wo.(0) = wow(1) = 0 in case (2 .10)v applies, or wo(0) = wo(1) = 0 in case
(2 .10)s applies, and suppose that (2.48) holds. Then there exists a unique classical solu-
tion (w(x, t), u(x, t)) of (2.8 - 2.11) defined on a maximal interval of existence [0, 1] x [0, T*)
such that, for any 0 < r < T < T*, w is in C,,,/ 2 (OT), u, ut are in [C,,,/2(QT)] N and
we, w,, w, are in Cac"4 2([0, 1] x [7,T]). In case T* < o, as t T T",

limsup sup (Iu(xt)I + Iw(x,t)) = oo (2.60)
tTT" 0<z<l

and/or
liminf inf a(x,u(x,t),w(x,t))=O. (2.61)

tTT* O<x<l

Furthermore, if Wo(X) E C2+,[0, 1] and the compatibility conditions (2.19) hold, then wt,
w,, wx are in Ca"o/ 2( QT) for any T < T*. If, in addition, uo(X) e [C,+1[O, 1]] N , then

ux, uxt are in [Caa/2(QT)]N for any T < T*.
Proof. We work with the boundary conditions (2 .10)s; the case of (2.10)v is treated
similarly.

Let wo(x) 6 Cl+[0, 1], uo(x) e [C[, 11] N be given, satisfying the compatibility con-
ditions wo(O) = wo(1) = 0 as well as (2.48). We proceed to establish a local existence
theorem for (2.8 - 2.11). First, construct approximating sequences {wOn} and {uo} such
that won(x) and uo,(x) are C°-functions on [0,1] satisfying (2 .19 )s, and, as n -* cc,

Wo,- wo in C'[0,1] , IWOnll+, ___ ,o0I1+. (2.62)

u0 -+ uO in [C[0, 1]] N , luo., _< I Kuo (2.63)

with K a fixed positive constant (for details of such a construction see [19]).
Consider the problem (2.8- 2.11) with initial data (wo,,(x), Uo,(x)). Referring to part

(b) of Lemma 2.3, let

o= Min} a(xuo(x),r) :0< x < 1 inf won(x) r < sup won(x) (2.64)
( O<z<1 O<z<I

Since (wo(x),uo(x)) satisfy (2.48) and uo(x) is continuous, liminfmn > 0. By throwing
away a finite number of terms, if needed, we may assume that mo := infm,, > 0. Fix

n

pu, M, Al and M+ such that Al < inf inf won(X) < sup sup wo,(X) < M+,
n O<x<l n 0<x<l

Al > 0, 0 < p < m0 .Theorem 2.1 in conjunction with Lemma 2.3 imply that for each
n = 1,2,... tLere is a classical solution (w.(x,t),u.(x,t)) of (2.8 - 2.11) defined on
[0, 1] x [0, T,,], with smoothness as in Theorem 2.1, and corresponding to the initial data
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(Won(X),Uon(X)). Moreover, To :=-infTn > 0, and on the domain (T = [0,11 x (0, To] the

functions (wn(X,t),un(X,t)) satisfy the uniform bounds

]un(x,t) - uOn(x)l < M , M-_ < nw(X,t) M+ (2.65)

and
a(x,u,(x,t),wn(x,t)) > 0. (2.66)

Using (2.62), (2.63), (2.65) and (2.66), relations (2.39) and (2.40) in Lemma 2.2 together
with (2.9) imply that on QTo

Hwn[lO,1 K , Ilu-ll ,/ 2 + IIOunll,3,/ 2 < K, (2.67)

where /3 = min{a. f} and K is a constant independent of n.
Since the injection C,,'0 2 (QTo) _+ C"',#3 /2(QT) is compact for 03' < 0, (2.67) implies

that there are subsequences {w,,,} and {u,'}, as well as functions w(x,t) and u(x,t), with

weC,/ 2 (QT 0 ) and u, OtuE [C'/2(QTo)]N, such that

wn, --+ w in C .3' '/2(QJTo),

,n, - U, aun, --+ au in [C,3',I'/2(QnT)]N (2.68)

Clearly (w(x,t),u(x,t)) satisfies (2.9), (2 .10)s and (2.11). Using (2.68) together with
results on families of solutions of parabolic equations (cf. Friedman [8, Sec. 3.6]), it
follows that (w(x, t), u(x, t)) is a classical solution of (2.8). The stated regularity of this
solution is an outcome of the interior and boundary parabolic estimates [8, Sec. 4.7].
Uniqueness follows from a lengthy but routine argument that is omitted.

If wo(x)E C 2+[0, 1) and satisfies (2 .19 )s then Theorem 2.1 implies that wt, w, and
w, are in C"c'/2 (QT). Suppose that, in addition, Uo(X) e [C,+,[0, 1]] N . Now u(x,t) sat-
isfies (2.9) with w, w. E Ca'c/2 (QT). Using standard theorems on continuous dependence
for ordinary differential equations, together with estimates in the spirit of the derivation

of (2.'-7), leads to u., uxt E [C ' 0/2(QTo)] N

Finally, Theorem 2.1 implies that the solution (w(x, t), u(x, t)) can be continued on a
maximal interval of existence [0, 1] x [0, T*), such that either T* = oc, or at least one of
(2.60) or (2.61) occurs. l

Next, we turn to the initial-boundary value problem (2.1 -2.5). We assume that the
initial data satisfy

vo(x) f C 2+,[O, 1], Uo(X) f [C,+"[0, 1]] N , (2.69)

= min q(x, o(), (x,uo(x),r) :0< x < 1, inf wo(x) < r < sup wo(x)1 >0,
o t- -O<x<l O<<1 )

(2.70)
where wo(x) is given by (2.6), and the compatibility conditions:

vO(0) = vO(1) = 0 , W'(0) = wo(1) = 0, (2 .7 1)v
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in case (2.4) v applies, or
wO(0) = wo(1) = 0, ( 2 .7 1 )s

in case (2 .4 )s applies. We prove:
Theorem 2.5. Under the hypotheses (2.69 - 2.71), there exists a unique classical solution
(v(x, t), u(x, t)) of (2.1 - 2.5) defined on a maximal interval of existence [0, 1] x [0, T*)
such that, for any 0 < T < T*, v, vx, vt, v., are in Cc"/2 (QT) and u, ut, ux, uxt are in

[Ca""/2( QT)] N. If T* < oo, then, as t T T*, at least one out of (2.60) or

liminf inf Wq(x,u(X,t),Vx(x,t))=O (2.72)
tTT* O<z<l

occurs. Finally, w(x,t) = V(xu(xt),vx(xt)) satisfies (2.41), where C3 only depends on
mo and the sup-norms of wo and Uo.
Proof. For concreteness, we treat the boundary conditions ( 2 .4 )s. Let (Vo(x),uo(x))
satisfying (2.69), (2.70) and (2 . 7 1)s be given and define wo(x) by (2.6). Consider the
problem (2.8 - 2.11) with a, b and g defined by (2.12). Theorem 2.4 asserts that there is a
unique solution (w(x, t), u(x, t)) of (2.8 - 2.11) defined on [0, 1] x [0, T*) and with regularity
as stated there.

Our objective is to define v(x,t) by (2.13) subject to the initial data v(x.0) =
vo(x), 0 < x < 1. Then (v(x,t),u(x,t)) is a solution of (2.1 - 2.5). For v(x,t) to be
well defined it is at least required that, for each fixed x e [0, 1], w x (x, .) is integrable. In
view of Theorem 2.4, to complete the proof it suffices to show that, for some r small,

WX, Vt, VXz C4E Cca/2 (Q r), Ux, Uxt.E [C,a/2(Q,)] N and also that (3.41) holds. This is ac-
complished by a density argument.

Consider approximating sequences {won} and {Uon}, consisting of C°-functions on
[0, 1], with {wo,} as in (2.62) and {uo,} satisfying

uo-* Uo in [C1[0,1]] N  , IU0n1i+a <_ Kiluol+., (2.73)

as n --. oc. Set Von(X)= vO(0) + fo O(y, Uon(y), wo.(y))dy and observe that

Von --- vo in C 2 [0, 1] , IvO,12+a 5 K 2 (IV'0 12+a + IUOII+a). (2.74)

Let (w,(X,t), Un(x,t)) and (vn(x,t), u,,(x,t)) be the corresponding solutions of (2.8 - 2.11)
and (2.1 - 2.5), respectively; vn(x,t) is defined by solving (2.13) subject to Vn(X,0) =

Von(x). Note that by uniqueness for (2.8 - 2.11), (2.68) and (2.13) imply that

w. w, Oc:v --*O 9v in C(QT)

u, -+ U in [C(QT)]N (2.75)

for any fixed T < T*.
The functions v,, and w,, := 0un satisfy the equations:

Otvn = A,(x, t)Oav. + B,,(x, t) . W +C,(x,t) (2.76)
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atwn = Dn(x,t)wn + En(x,t)0.9v, + Fn(x,t), (2.77)

where, on account of (2.66), (2.67) and (2.13)1, the components of An - Fn are uniformly
bounded in C*''/ 2(QT), and for n large An(x,t) >_ p for some ji > 0. The Schauder
estimates for (2.76), together with (2.74), yield

IIVnhI2+a,+a/2 < K 3[Ivo12+, + IUOII+, + jII,1,,a/2 + 1]. (2.78)

Proceeding as in the derivation of (2.27), (2.77) implies that on Q, with 0 < r < T
1-010

IWnlia,, _< K4[Iuoli+a + (r + r')llO vnll,./2 + 11. (2.79)

The constants K 3 and K 4 are independent of n. Combining (2.78) and (2.79) we conclude
that, provided r + r1l- a < 2 I ,the estimate

IlVnl 2+a,1+a/ 2 + IIWnll,,/2 _ K5 (lvo[ 2+, + [uo1 1+. + 1) (2.80)

is valid on Q,. Also, by virtue of Lemma 2.2, wn(x, t) satisfies (2.41).

Relations (2.80) and (2.75) give w., V."r f C°",/ 2(Q,) and u. e [C~"°'/2(Qr)]N. Also,

Vi = wr EC'/ 2 (Q,) and u.t = fx + f, . ux + fq . ve [Ca,/2(Qr)] N. Finally, w(x,t)
satisfies (2.41). g

3. On the Competition of Strain Softening and Strain Rate Dependence

The scope of this Section is to elucidate the competition between the destabilizing
influence of strain softening and the stabilizing influence of strain rate sensitivity and their
effect on the response of shearing motions. Also, to provide quantitative criteria that
determine which one prevails.

We use as a test case, the initial-boundary value problem consisting of (1.1 - 1.3),
namely

vt = (r(u .

0 < X < 1, t > 0 (3.1)
Ut =- /2Z

with boundary conditions (1.9 )s and initial conditions (1.5). The initial data are taken
smooth: vo(x) f C2 +a[0, 1], uo(x) 6 C+[0, 1], for some 0 < a < 1; compatible with the
boundary conditions: a0o(0) = ao(l) = 1; and satisfying the sign restrictions

Uo()>0, ao()>0 , 0<x< 1. (3.2)

Henceforth, we will refer to this problem as (P)s. Recall that r(u) is a smooth function
satisfying (1.4) and n is a positive parameter.

The theory developed in Section 2 implies the existence of a unique solution
(v(x,t),u(x,t)) of (P)s, defined on a maximal interval of existence [0, 1] x [0,T*), such
that v, V9, v, v~Z, u, Ut and u, are in C'"/ 2(QT), for any T < T*. In addition, given
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any compact subset k of (0, oo) x R, (a(x, t), u(x, t)) escapes k as t T T*, i.e., there are
sequences {x'} C [0,1] and {t,} with t,, T T" such that (a(x,,t,,),u(x,,,t,)) V kA. The
identification of (P)s with (2.1 - 2.6) is done by setting w = p(x,p,q) = r(p)q - 1.
(Although p is not C 2 at q = 0, it is C 2 when restricted to compact subsets of [0, 1] x R x
(0, oo); this remark together with the results of Section 2 provide the above statements).

Our objectives are: (a) to characterize the class of functions r(u) and parameters
n that guarantee global solvability for (P)s, and (b) to study the behavior of solutions
(v(x, 0) u(x, t)) of (P)s.

To this end, it is expedient to use a different formulation of (3.1). Note that for
(x, t) E [0, 1] x [0, T*), a solution of (P)s satisfies

U(x,t) > 0, u,(x,t) = v,(x,t) > 0, u(x,t) > uo(x) > 0. (3.3)

A simple calculation, using (1.1 - 1.3), shows that (a(x, t), u(x, t)) is a positive solution of
the reaction-diffusion system

( ) 1 'T'(U) 2
= r(u)*o= + -T'( - (1))2 (3.4)

fu).

=, r(u)1 (3.5)

on [0, 1] x [0, T*). For this step and for the remainder of the Section we assume that
(v(x,t), u(x,t)) enjoys some additional smoothness, namely, v~t, v... and u., are in
C"'.a/2 (QT), for any T < T*. Such solutions are generated if we take smoother initial data,
a hypothesis that can later be relaxed using density arguments (cf. Section 2). Integrating
(3.5), yields

I.t

,D(u(x,0) = (uo(U)) + fo (x,r7)d, (3.6)

where

i(u) = r( )*d . (3.7)

An important ingredient of the forthcoming analysis lies in estimating oa(x, t) by means
of comparison principles (e.g. [13, Ch. 3, Sec. 7]) for the parabolic equation (3.4); in turn,
u(x, t) is estimated using (3.6). We state the comparison principle used as a lemma for
future reference.

Lemma 3.1. Suppose that for any T < T*, al(x,t) and O2(X,t) are both in C 2"'(QT) with
al(x,t) > 0 and o 2(x,t) > 0, A(x,t) E C(QT) with A(x,t) > 0 and B(x,t) E C(QT). If.
for any T < T*,

(a A(x, t)o + B'( it ) < (ot) -A(x, t) 2 ,l+B(x, t)(o, on

u1(1,t) 0 o2(i,t) ,i = 0, 1, < t < T,

(3.8)
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then
al(X, t) :_a2(X, t) 0 0_< ___, 0< t< T*. (3.9)

In applications of the lemma, the functions A and B axe taken respectively, A = r(u)* > 0

andB= - r'(") >0.n r(u)'+ >0

Our first theorem characterizes global solvability of (P)s in terms of the behavior of
D(u) as u --+ 0.

Theorem 3.2. Let (v(x,t),u(x,t)) be a classical solution of (P)s defined on a maximal
interval of existence [0, 1] x [0, T*). Suppose that r(u) satisfies (1.4). Then:
(i) T* = oo if and only if 4(oo) = o.

(ii) If T* < oo, then
lim sup u(x,t) = 00. (3.10)
t-T" o<z<l

Proof. Let (v(x, t), u(x, t)) be a solution of (P)s on [0, 11 x [0, T*), with T" maximal; let
a(x,t) be defined by (1.3). We estimate the solution in the interval of existence [0, 1] x
[0, T*).

Under hypothesis (1.4), any positive, concave function E(x) satisfies

1 1 r'(u) 2
-r(u) n E.. - > 0. (3.11)

If, in addition,
Y()>'ao(x) , 0<x<1 (3.12)

then applying Lemma 3.1, with comparison functions a(x, t) and E(x), yields

a(x,t) 5 E(x). (3.13)

First, we show (ii). Assume that T* < 00 and at the same time u(x, t) is bounded
from above on [0,1] x [0, T*), i.e.,

Uo- <_ u(x,t) < U+ < 0; (3.14)

here we used the fact that u(x,t) _ inf no(x) =: uo-. Let s(t) be the solution of the
O<r<I

initial value problem Ss-+ 0( )=0

(3.15)
s(0) = a0- := inf ao(x),

O<x<

1 Ir'( )l
where B 0 = max 1 Integrating (3.15), yields

-0__<<_U + n r -

=o > 0. (3.16)

(1 + aBot
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On account of (3.15) and (3.4), the comparison functions s(t) and a(x,t) satisfy the
parabolic differential inequality (3.8) on QT, for any T < T*. Using Lemma 3.1, we
deduce

S(t) <5 a(xt). (3.17)

Estimates (3.12), (3.14) and (3.17) imply that (a(x,t),u(x,t)) remains in some compact
subset of (0, cc) x R as t T T*. But then the solution can be continued past T*, which
contradicts the assumption that T* is maximal and finite. Since ut > 0, we conclude that
if T* < co and maximal then (3.10) holds.

Next, we proceed to prove (i). Consider D(u) defined for u E (0, cc) by (3.7). 4(u)
is increasing and invertible with an inverse function -( ) defined for C E (P(0), 4 (oc))
and increasing. In case P(c) = cc, combining (3.6) and (3.13), we arrive at

u(x,t) < ( (uo(X)) + Z*(X)t). (3.18)

Then (3.14) holds for any QT with T > 0 and, necessarily, if T* is maximal then T* = oc.
By contrast, in case 1i(oc) < oc, (3.6) at x = 0 or x = 1 together with (1.9 )s leads to

'P(u(it)) = 1 (uo(i)) + t i = 0,1. (3.19)

In turn, (3.19) implies
u(i,t) - oo as t- Ti, (3.20)

where Ti = Ic(oo) - b(uo(i)) < cc for i = 0,1. Therefore, in case -(,(oo) < oo, T* <

M in{To,Ti} < oo.*

According to Theorem 3.2, the criterion for global solvability of (P)s is the divergence
of the integral flO -r( )*dC =: 1[(oo). Therefore, it is the decay rate of r(u) as u --+ oo
that determines global existence for (P)s. The class of positive, decreasing constitutive
functions r(u) can be decomposed into two categories, depending on whether 'I(oo) is
finite or infinite. Roughly speaking, the dividing line consists of functions r(u) that decay
to zero like the power u-'.

Next, we restrict attention to functions r(u) such that 4(oo) = oo (and thus T* = oo)
and consider the asymptotic behavior of solutions (v(x, t), u(x, t)) of (P)s as t -+ oo. In
case T(1) -r 0 a constant, a(x, t) is a positive solution of

( (3.21)

subject to the boundary conditions (1.9 )s; thus a(x,t) --+ 1 uniformly in x E [0,1] as
t ---* oc. The question is whether this behavior persists for positive and decreasing functions
r(11).

Two representative classes of functions r(u) are considered: Class (Hi) consists of
functions that decay to a positive constant T(oo) at a rate dominated by a power, i.e., for
some c> 0 and a > 0

r(u) >r(oo) >0 0<-r'(u)<-- , u>0. (HI)
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Class (H2) consists functions that decay to zero like a power, up to first order derivatives,
i.e., for some c > 0 and m > 0

M1 < r(u) c 0 < ( < u>0. (H2)

C um -M -r (u) -

Note that, to guarantee global existence for functions of class (H2), we assume 0 < m < n
so that ,D(oo) = oo. Also, note that under hypothesis (H1),

lira I(u) = T(CO)-, (3.22)
U-0

while, under hypothesis (H2) for 0 < m < n

lin sup 00 < liminf '(u) 0 (3.23)

U-00 S nI tL-00 U n

and for m = n ¢(u) ¢(u)
limsup ' < , liminf - > 0. (3.24)

We prove:

Theorem 3.3. Suppose the function r(u) belongs to either the class (H1) or the class (H2)
with 0 < m < . Let (v(x, t), u(x, t)) be a classical solution of (P)s on [0,11 x [0, oo),
corresponding to initial data (vo(x),uo(x)) with uo(x) > 0, ao(x) > 0 for 0 < x < 1 and
ao(O) = ao(i) = 0. Then, for any choice of the initial data in case 0 < n < 2 and under
restrictions for the data that are outlined below in case n > 2, the following hold: As
t --+ 00,

a(X, t) = 1 + O(t-, (3.25)

rU(z,t) I 
#s

r() d = t + 0(fS (3.26)

and
v(x, t) vo(y)dy + j 1' u d~dy + O(t- 6+ -) (3.27)

uniformly on [0, 1]. In case (H1) holds / = a > 0 and y = 0, while, in case (H2) holds
O< n3 ,-2m < l and - n

n-rm n-m

Proof. Let (v(x, t), u(x, t)) be a classical solution of (P)s defined on Q := [0, 1] x [0, oc).

Then (3.3) holds and (a(,t),u(x,t)) satisfies (3.4), (3.5) on Q"". We proceed to obtain
an initial a-priori estimate, independent of t, for a(x, t) using comparison principles. In

the sequel K will stand for a generic constant that can be estimated in terms of the initial

data and properties of the function r(u).

Set -y(u) to be the quotient of the coefficient of the reaction term over the coefficient
of the diffusion term in (3.4)

n r(u) r(U)2 / (3.28)
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If we can find positive functions S(x) and s(x) defined on [0, 1] and satisfying for (x, t) E
Qo the differential inequalities

2/ > (3.29)
S(x) >_ ao(X)

and -Sx^ =~,t) /n < o
s(X) 0 o(X), (3.30)

respectively, then Lemma 3.1 implies

s(x) <_ U(x,t) <_ S(x) (3.31)

for (x,t) E Qo.
Next, we examine the possibility of finding such functions S(x) and s(x). Observe

that under hypothesis (H1),

0 < <(u)< < 2  , u> inf uo(x) (3.32)
-ua -- O<z<1

while, under hypothesis (H2) for 0 < ' < I

A 3

0 <(u)_ _2 <K 4  , u > inf uo(x). (3.33)

Under either of (H1) or (H2), any concave, positive function S(x) satisfies (3.29)1. More-
over, for any choice of the initial function oo(x) > 0 there is a concave function S(x) such
that S(x) > ao(x), 0 < x < 1. Therefore, the right hand inequality of (3.31) is valid for
all values of the parameters and choices of the initial data.

Turn now to (3.30). If a positive function s(x) satisfies
.,2.

-s~X+ 70s 0 , 0<x< , (3.34)

where yo = K 2 in case (H1) holds or to K4 in case (H2) holds (0 < -2 < ), then s(x)
also satisfies (3.30)1. Consider two cases n < 2 and n > 2.

(i) If n < 2, the parametric family s,,(x) = . 2(x 2 +1) satisfies the inequality (3.34) provided
a > 0 and a -<-L. Given any (ao(x),uo(x)) both positive on [0, 1], we fix -yo (which
depends on uo(x)) and choose a sufficiently small so that s,,(x) <_ ao(x) and (3.34) is
fulfilled for x E [0, 1]. Then s,,(x) satisfies (3.30), and the left hand side of (3.31) is
established.

(ii) If n > 2, a function s(x) satisfying (3.34) and (3.30)2 can only be found for restricted
choices of the data (ao(x), uo(x)). For instance, given o 0(x) find the largest a > 0 such that

s"(x) = 2(x 2 + 1) < ao(x). With this a fixed, s,,(x) satisfies (3.34) provided -to <5 a .-

In view of the choice of -yo and (3.32), (3.33), this imposes a restriction on uo(x) and/or
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the function r(u). If these restrictions are satisfied then the left hand inequality of (3.31)
holds.

Henceforth, we restrict attention to the cases when (3.31) holds. Using (3.31), (3.6)
yields

-t <_ (u(x,t)) - D(uo(x)) K_ g 5t , t > 0. (3.35)

Combining (3.3) and (3.35) with (3.22) or (3.23) we conclude that, under hypothesis (Hi),

1 + 1) < u(x,t) < K 6 (t + 1), (3.36)

while, under hypothesis (H2) with 0 < < 2'
n

( (t + 1) - -'  < u(x,t) _ K.7(t +

In view of (1.1) and (1.9 )s we have the following identity:

-d / v2dx + [atvtdx = 0. (3.38)

2 dt Jo Jo

Using (3.38), together with (3.4) and (1.1),

2dtI v2dx +.7( a Vdx - () r(U)'n V3tdx, (3.39)

which, together with Schwarz's inequality, implies

1d d oV2dx n o 1 '  1-1 2- 7-n ~ I ,'(u).2 o" +a

d + 7(u)d a .vtdx < (r.u) ) dx. (3.40)

dt Jo 2 Jo - 2n J, 'u) (U)i

Also, the calculus identity

a,(x, t) = jo ax(y, t)dy + 1 a(,t)d , (3.41)

together with (1.1), (1.9 )s and Schwarz's inequality lead to

,2t (X,t) <o vxt( , t)d . (3.42)

Suppose first that (H2) holds and 0 < M < . Then, combining (3.31), (3.37) and
the inequalities in (H2) with (3.40) and (3.42) we arrive at the differential inequality

-dr v~dx + 1-(t + 1)- m f v2 dx < K9 (t + 1)'- -
. (3.43)
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If 0 < . < -, then integrating (3.43) we obtain

jv~t(x,t)dx < K1o(t + 1)-m (3.44)

however, if = , then (3.43) does not provide any decay. Relation (3.44), in conjunction
with the Poincar6 inequality

(o(x, t) - 1)2 < j 2(, t)d (3.45)

and (1.1), yields (3.25) when (H2) holds.
When (HI) holds, the same sequence of steps using (3.36) and (Hi) in the place of

(3.37) and (H2) lead to the differential inequality
d ,1 2d :-9S dj + I j v2dx < K1 2 (t + 1)2 a , (3.46)

which, once integrated, yields

j v(Xt)dx < K 1 3(t + 1) - 2 . (3.47)

Combining (3.45) and (3.47) we arrive at (3.25), in case (Hi) holds.
To show (3.26), observe that (3.6), (3.7), Poincar 's inequality, (3.31) and (1.1) yield

[u(z,t)[_ft - )ld

JUo(z) W ()d - t 10 (x,) - id7 (3.48)

Using (3.4S) together with (3.44) or (3.47) in cases (H2) or (Hi), respectively, we deduce
(3.26).

Finally, the identities
lj( a "( 't)d~dy (.9

v(x,t) =j v(y,t)dy + 1 X-L(]t)(

00f it, (U( , t)) (49

and L 1l

v(y,t)dy = ] vo(y)dy (3.50)

(by (1.1) and (1.9 )s), together with Poincare's inequality and (3.31) imply

t ] vyd - /ddyl 5 11M ' 0)';~d 0 r~u)(3.51)
<i5( j 2dx )1/2( .dx).
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Using (3.47) in case (H1) holds, or (3.44) and (3.37) in case (H2) holds we arrive at (3.27).

Between the class of functions r(u) satisfying D(oo) < oo, for which solutions of (P)s
blow up in finite time, and the class of r(u) satisfying (H2) with 0 < .21 < , for whichn 2'
solutions of (P)s behave asymptotically like in (3.21) (cf. (3.25)), there remains a gap to
be analyzed For a power law

r(u) =u -  (3.52)

the gap corresponds to the powers _ < 1.
In the sequel we consider the power law (3.52) with - > and analyze the behavior

of solutions of (P)s. Let (v(x, t), u(x, t)) be such a solution defined on [0, 1] x [0, T*); here
T* = +oo if I-< - < 1 and T* < 0o if -1L > 1. The function o(x, t) satisfies (3.4) with
r(u) as in (3.52), while (3.6) yields

u(x, t) 1-  -uo(x) 1 - " + (1- m ) a(x, -)dr, (3.53)

in case -2 1, and

enu(x,t) = enu0 (x) + j (x,,-)d- (3.54)

in case = 1.
n

We examine the class of solutions of the differential inequality (3.29). Note that, by
virtue of (3.28), (3.52) and (3.3), for -2 >

-y(u(X,t)) = u(x, t)2 -1 >-1 0 (n)2 -1 (3.55)

n n

Then, Lemma 3.1 implies:

Lemma 3.4. Let 2 > 1. If S(x) is a smooth, positive function satisfying for x E [0,1]

(X) + o(x ) S (x) 0 (3.56)

where -y0 (x):= n.n(x)2 - , then

a'(X,t) <_ S(x) , < X <_ 1, 0 <_ t < T*. (357)

If >, given any S(x) _ ao(x) > 0, (3.56) can be always satisfied by choosing
uo(x) > 0 appropriately. Namely

-uo(X)2 L..1 >_____XS,(x) (3.58)

In particular, ao(x) can be used as a choice for S(x) for restricted choices of u0 (x).
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If ! = , then S(x) i> a0(x) > 0 will satisfy (3.56) provided

!> S.(X) (3.59)
2- S*(x)

In light of the above remark, we study the family of potential choices

S,(x)=1+ax(x-1) , 0<x< (3.60)

where 0 < a < 4. Note that Sa(x) is convex and attains its minimum S"(1) = 1 - a > 0.
2 4

Also Sc(x) --+ 1 uniformly on [0, 1] as a -+ 0.

(a) Case m> 12
If the initial data (uo(x), ao( x)) are restricted so as to satisfy

,o~)< S(x) , uO(x) __ U := n 2a ] 2m-n < X <1 (3.61)
4]

then Lemma 3.4, in conjunction with (3.58), implies

a(x,t) __ S.(x) , 0 < < 1,0 < t < T*. (3.62)

Observe that u,, --+ 0 as a -- 0.
Consider now the problem (P)s with initial data (oo(x),uo(x)) = (S,(x),u ), for

some 0 < a < 4. Let (a'(Xt),u(Xt)) be the corresponding solution; it is defined on
[0, 1] x [0, T*). Also,

or'(x, t) < SQ(x) = 1 + ax(x - 1) (3.63)

for (x,t) E [0,1] x [0, T*).
We consider three separate regions:

(i) . < < 1: Here T* = +oo. In addition, (3.63) and (3.53) yield

u'(x,t) :5 [u -  + (1 - n U) (X)t (3.64)

for 0 < x < 1, 0 < t < oo. Note that, since Sa(0) = Sa(1) = 1, the boundary condition
(1.9)s together with (3.53) imply that (3.64) is in fact an equality at x = 0 and x = 1.
A comparison of (3.25) and (3.26) with (3.63) and (3.64) reveals the drastic difference in
the behavior of solutions across the parameter values -- -1. In particular a,(x,t) does

i n 
2 "

not converge to 1 as t --+ o, and spatial nonuniformities of the strain u(x, t) develop and
persist in time. This is the case no matter how close to the constant function 1 the initial
state S,(x) is. The diffusion is in this case too weak to uniformize the solution.

(ii) JI = 1: The situation is similar to part (i) with (3.64) replaced by

U(Xt) !5 Uexp{ (X)t} (3.65)
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by virtue of (3.54).
(iii) !I > 1: Here T* < +. The solution (a,(x, t), u,(x, t)) satisfies on [0,11 x [0, T*) the
bounds (3.63) and

uc(x,t) _ [U - - - ji - s (x) . (3.66)

The bound on the right hand side of (3.66) blows up for the first time at the boundary
i-m.

points x = 0 and x = 1 as t --+ T,,:= 7 T 2-c- . Then (3.10) together with (3.66) imply

that T* > Tcr. However, since SG(0) = S,(1) = 1, (3.66) is in fact an equality at x = 0
and x = 1 and thus T* = Tc,. The function u,(x, t) blows up exactly at the boundary
points x = 0 and x = 1 as t -- Tcr = T*; in blowing up it satisfies (3.66) and appears like
two shear bands located at the boundaries x = 0 and x = 1. Moreover, as t - T*, the
function a,(x, t) obeys the bound (3.63), while

oiua(Xt) = -xVa(X't) S"(X)[uar j1 - Isa(x)t (3.67)1 n

with an equality at x = 0 and x = 1.
Note that in the above cases any 0 < a < 4 can be chosen. Also, by choosing other

types of functions S(x) in the place of (3.60), the nonuniformities that develop near the
boundary can be made very strong, at the expense of restrictions on the initial data (cf.
(3.58)).

(b) Case =n 2

If a small enough so that 2a < 4( - ) , then S'a(x) satisfies (3.59). Consider
initial data (S.(x),uo(x)), with a small and uo(x) > 0 but otherwise unrestricted. Let
(a.(x,t),u.(x,t)) be the corresponding solution of (P)s; it is defined on [0,1] x [0, oo).
On account of (3.60) and Lemma 3.4, oa(x, t) satisfies (3.63) and the uniform state a - 1
again loses stability, as is the situation in the case - > -.

4. The Power Law and Scale Invariance

For the particular choice r(u) = -LM, the constitutive relation (1.3) takes the form of
the power law

= nv (4.1)Um z

where m, n are positive parameters. Under (4.1), (1.1 - 1.2) read
1 n", = ( 1- n), (4.2)

Ut = V

and, correspondingly, (3.4 - 3.5) take the form
(1), _- mm M

(a n = U n aZz -- U n a
n (4.3)

Ut = U n"
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The power structure of the system (4.2) induces the following scaling property: If
(v(x, t), u(x, t)) is a solution of (4.2) on R x (0, oo) then (vA(x, t), uA(x, t)), defined by

V'\(Xt) = A'v(Ax, A-'t) (4.4)

U-(X,t) = A a u(Ax, a ,t), (4.5)

where A > 0 and 6, a are any constants with

M(a+ + 1) + 6) +a- 6 + 1=0, (4.6)

is also a solution of (4.2) on R x (0, oo) ([16]). As a consequence

, (xt) = A a(Ax, A-at), (4.7)

and (0A(x, t), u,(x, t)) satisfies (4.3) on R x (0, oo) for any A > 0. Therefore the systems
(4.2) and (4.3) are invariant under the group of stretching transformations T",6 :

X-- Ax, t -- A-0 t, v -- Av , u -- A L u, a -- A ;0< A< o (4.8)

with a, S constrained by (4.6).
The system (4.2) admits a special class of solutions describing uniform shearing

-&(x,t)=x , i(x,t)=t+Uo. (4.9)

They correspond to initial data Uo(x) - x and iio(x) = uo, where u0 is an arbitrary
positive constant. For the special choice u0 = 0, (x, t) is a self similar solution under the
transformation Ta,6 with a = -6 rn-I

Consider now the initial-boundary value problem consisting of (4.2) on [0, 11 x {t > 0}
with boundary conditions (1.9 )v and initial conditions (1.5). Suppose that the initial data
are smooth vo(x) E C2+c[0, 1], uo(x) E C1+0[0, 1], for some 0 < a < 1, they are compatible
with the boundary data, and satisfy the sign restrictions ao(x) > 0, uo(x) > 0, 0 < x < 1.
We will refer to this problem as (P)v (including the assumptions on the initial data).

The existence theory developed in Section 2 implies that (P)v admits a unique clas-
sical solution defined on a maximal interval of existence [0, 11 x [0, T*). Moreover, if
T* < +oo, given any compact subset IC of (0, oo) x (0, oo), (o(x,t),u(x,t)) escapes K as
t T T*. Also, for (x, t) E [0,1] x [0, T*),

a(x, t) > 0 , ug(x, t) > 0 , u(x, t) Uo(X). (4.10)

The uniform shearing solution (4.9) is a special solution of (P)v for initial data (x, u 0 ).
Our objective is to study the stability of this solution. To this end we use a transformation,
motivated by the scaling properties of (4.2), to obtain a system that admits invariant re-
gions [4]. A similar idea has been independently pursued by Bertsch, Peletier and Verduyn

Lunel [1] for a related system.
We prove
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Theorem 4.1. Suppose m < n. There exists a unique classical solution (v(x,t),u(x,t))

of (?)v defined on [0, 1] x [0, oo) such that v, v., vt, v.., u, u. and ut are in C""/(QT),

for any T > 0. Moreover, if m < min{n, 1}, as t -+ 0o,

v'(x, t) = 1 + O(t6- 1 ) (4.11)

u(x, t) = t + O(to) (4.12)

and
a(x,t) = tCm(1 + O(tO-')) (4.13)

uniformly on [0,1], with I3=max{-L,m} < 1.

Proof. Introduce the transformations

v(xt) = V(xs(t)) (4.14)

u(x,t) = (t + 1)U(x,s(t)) (4.15)

u(x, t) = (t + 1)-m E(x,s(t)) (4.16)

with
s(t) = en(t + 1), (4.17)

which are motivated by the form of the uniform shearing solutions and the scaling invari-

ance (4.8). Relations (4.14 - 4.16) and (4.1) induce

U m V(4.18)

Moreover, since (a(x, t), u(x, t)) satisfies (4.3) and

Ut(O>t)0=a,(1,t)=0 t>O, (4.19)

it follows that (E(x, s), U(x, s)) solve the system of reaction-diffusion equations

,(,-)ov- n r, ,,_mv _ (SI. _ v'-JI )
=) (4.20)

1=u (E. . - u 1- M),
us= U-

subject to boundary conditions

,(Os) - EO(l,s) = 0 , s > 0 (4.21)

and initial conditions

E(x,O) = ao(x) U(x,O) = Uo(X) , 0< x <1. (4.22)
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If 0 < - < 1, the theory of Chueh, Conley and Smoller [4] guarantees that (4.20)

admits positively invariant rectangles of arbitrary size in the first quadrant {(E, U) E R2

E > 0, U > 0}. They are centered around the line E = Un m and look like in Fig. 1.

E U"

0
0 U_. U+~ U

Fig. 1: Invariant regions for (4.20)

Given initial data ao(x) > 0, uo(x) > 0, let U-, U+, E_ and E+ be the defining coordinates
of the smallest invariant rectangle containing (ao(x), uo(x)), 0 < x < 1. Then

E_ < E(x,s) E+ , U_ < U(x,s) < U+. (4.23)

In turn, (4.15), (4.16), (4.14) and (4.18) in conjunction with (4.23) yield

U_(t + 1) u(x,t) U+(t + 1), (4.24)

E_(t + 1)- a(x,t) _ +(t + 1)- '  (4.25)
1.. m.EnUn < V (x,t) < nU (4.26)

The first implication of (4.24 - 4.26) is: For 0 < - < 1 the functions (a(x,t),u(x,t))
n

remain in a compact subset of (0, oo) x (0, o) for any finite time. Thus T* =+o,

that is solutions (v(x,t),u(x,t)) of (P)v are globally defined. In addition (4.24- 4.26)
provide preliminary information on the time evolution of solutions. They are supplemented
below with parabolic-type energy estimates to establish the stated asymptotic behavior.
In what follows K will stand for a generic constant that depends only on the data and the

parameters m and n.
Our first goal is to estimate the L 2 -norm of vi. To this end, differentiate (1.1) with

respect to t and use (4.1) and (1.2) to obtain

(5 m
v,,= nv -1 r +M vn'+ 1  

(4.27)
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We multiply (4.27) by vt and integrate by parts over (0, 11, using (1.9 )v, to arrive at

ldfo fo -1v
+

T vtdx + n f- v xtdx (4.28)

On account of (4.24), (4.26) and Schwaz's inequality, (4.28) yields

-t vtdx + 1(t + 1)-j v0tdx < K1 (t + . (4.29)

Finally, combining (4.29) with the Poincar inequality

,t(X,t) < j ,t(xt)dx (4.30)

we arrive at the differential inequality

- v2dx + I(t + 1)-rn] v2dx < KI(t + 1 •-,2  (4.31)

Integrating (4.31), we deduce

I 2(,tdX< 2X
V (x t~dx + 1)-dT-

J t, I 1  (s +(4.32)

+K 1 (S + 1)-,- 2eXp{ - j ] (r + 1)- m dr}ds.

In case m < 1, L'Hopital's rule implies

lim f° (s ± 1)-' 2ezP{-ff(T + 1) m dT}ds = K 1 . (4.33)

(+1)exp{-- f(-r + I)-mIdr}

In view of (4.33), (4.31) yields for 0 < m < 1

tV2 (X,t)dX < 1 2 (t + 1 2
0 Vt (434)

By contrast, if m > 1, (4.32) does not provide decay for the L2 -norm of vt. Finally, if
m = 1 the decay rate depends on the coefficient K, in (4.31).

Equations (4.3)2 and (1.1) readily imply

U_(X, t)U.(Xt)= uo  (x)Uo.(X) + J oi-'(x, r)vt(x, r)dr. (4.35)
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Two cases are considered: (i) If n 0 1, then, by virtue of (4.24), (4.25) and (4.34), (4.35)
yields

j lu(X,t)ldx < K 3 (t + 1)' + K 4 (t + 1)' (r + 1)- +m( v(x,r)dz)1 /2 dr

<5 Ks(t + 1)2L + K6(t + 1)m .

(4.36)
(ii) If n = 1, then (4.35) reads

u-(x, t)u.(X, t) = uOm (X)uo (X) + v(x, t) - Vo(x). (4.37)

Using (4.24) together with the maximum principle for (4.2), we arrive again at (4.36).
Combining (4.36) with the identities

u(x, t) - Jou(tj, t)dy = 101~ t)d~dyS1 (8 (4.38)

u(y,t)dy = t + uo(y)d

we obtain (4.12).
Next, use the identity

rVn- 1  M~t+M

fv V" = U'V + ,V (4.39)

in conjunction with (4.26), (4.24), (4.34) and (4.36) to deduce

f1 Ks 2(XltzdX 11 +dKj IvX(x,t)dx < K 7 (t + 1)( vt(x't)dx) /2 + -1 jl(, t)dx (4.40)

< K9 (t + 1)m- 1 + K 10(t + 1)L-1

Then (4.11) follows by virtue of (4.40) and the Poincar6 inequality

Iv'(x,t) - 11 _ j IvXX(x,t)Idx. (4.41)

Finally, to show (4.13), note that on account of (4.11), (4.12), as t -o o

vn(x,t) = 1 + O(t - 1) (4.42)

u-m (x,t) = t-m (1 + 0(to- 1 )), (4.43)

where 0 = max{ .,m} < 1. Combining (4.1) with (4.42) and (4.43) gives (4.13). |
To shed some light on the relevance of the constraint m < 1, consider the case 1 <

m < n and observe that (4.24) implies

U; M (t + 1)-" < t- m (x,t) <_ U2'-(t + 1)-. (4.44)
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Thus, the diffusion coefficient in (4.2), decays like (t + 1)-m.
Consider the problem

V,-a(t)(v ) (4.45)

on [0,1] x [0, oo), subject to (1.9 )v and v(x,0) = vo(x) with vo,(x) > 0. The change of
variables

V(x,S(t)) = v(x,t) (4.46)

s(t) = j a(r)dr (4.47)

suggests that V(x, s) satisfies
V. =(4.48)

subject to the same initial and boundary conditions. For a(t) = (t + 1)-m, we have:
soo:= lim s(t) is infinite for m < 1, but finite for m > 1. Also,

lim v(x,t) = lim V(X,s). (4.49)t---oo 8"-s

If so = +00, then lim v(x, t) = z; however, if s, < +oo, in general, this will no longer

be true.
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